#### Geographic Information System (GIS) IS 454

#### Lecture 4: GIS Data Modelling

Professor Dr. Safa A. Najim Computer IS department College of CS and IT

## **GIS data modelling**

What is a data model?
GIS data models
CAD, graphical and image GIS data models
Raster data model
Vector data model
Object data model

#### What is a data model?

- □ The heart of any GIS is the data model.
- A data model is a set of constructions for describing and representing selected aspects of the real world in a computer.
- There is no single type of GIS data model that is best for all circumstances.

## The role of a data model in GIS



#### Levels of data model abstraction

Increasing abstraction



## **Conceptual model**

#### A road:

- Centre line (position)
- Edge line (width)
- Shoulder
- Number of lanes
- One way/two way
- Speed limit
- Traffic conditions

• Pavement

... ...

- Underground structure
- Intersections
- Date of completion
- Maintenance date





## Logical model



## **Physical model**



## **GIS data models**

CAD, graphical and image GIS data models
Raster data model
Vector data model
Object data model

#### A CAD data model



A CAD model focuses on feature drawing only so that it does not represent any kind of relationships between objects.

## A simple graphical data model



A simple graphical data model is adequate to make a cartographic representation of a city.

#### Image data model



Image data: can be used to:

- 1) the color composite (as the left image).
- 2) the classification of the image. (as the right image)

## Raster data model

- Raster data model uses an array of cells, or pixels, to represent real-world objects.
- Difference between raster and image data models:
  - Image data do not have attribute table attached so that they have only one attribute field.
  - Raster data have attribute table that can be joint to other tables so that they can have multiple attribute fields.
  - Applications: image data: image processing; raster data: spatial analysis and modelling

## Data structure of raster data model

Cartographic model (database)
Map layer (overlay, coverage, grid)
Class and zone (region, patch)
Location (cell)

# Cartographic model

- The data for an area can be visualised as maps or layers.
- A cartographic model is a set of data describing selected characteristics of each location within a bounded geographic area in the form of map-like layers.

#### A raster database



| 3 | 3 | 3 | 3 | 1 | 2 | 2 |
|---|---|---|---|---|---|---|
| 3 | 3 | 3 | 1 | 1 | 2 | 2 |
| 3 | 3 | 3 | 1 | 1 | 2 | 2 |
| 3 | 3 | 1 | 1 | 2 | 2 | 2 |
| 3 | 1 | 1 | 1 | 2 | 2 | 2 |
| 3 | 1 | 1 | 1 | 1 | 2 | 1 |
| 3 | 3 | 1 | 1 | 1 | 1 | 1 |

Soils

## Map layer

A map layer is a set of data describing a single characteristic of each location within a bounded geographical area.

- Only one item of information is available for each location within a single layer.
- A layer is characterized by its resolution (cell size) and orientation.
- □ A layer is composed of one or more classes.





#### Class

A zone is a set of contiguous location that exhibit the same characteristic.

□ The term class is used to refer to all individual zones that have the same characteristic.

□ A class is associated with its class ID and attributes.

 A class/zone is composed of a number of locations (cells).

#### **Class and zone**



## A location and its coordinate



## Vector data model

Simple features
Network data model
TIN data model

#### **Vector representations**



### **Multiple representation**





Small-scale representation of cities as points Large-scale representation of cities as areas

## **Simple features**



| Point number | x, y coordinates                |
|--------------|---------------------------------|
| 1            | (2, 8)                          |
| 2            | (3, 3)                          |
| 3            | (12, 7)                         |
| 4            | (9, 4)                          |
| Line number  | x, y coordinates                |
| 1            | (1, 6), (4, 8), (8, 6), (13, 8) |
| 2            | (1, 3), (4, 4), (9, 2), (13, 5) |

| Polygon number | x, y coordinates       |
|----------------|------------------------|
| 1              | (2, 5), (3, 8), (2, 5) |
| 2              | (6, 4), (8, 4), (6, 4) |

#### A network data model



#### **TIN data model**

| Triangle Table |           |      |       |  |
|----------------|-----------|------|-------|--|
| ld#            | node#     | area | slope |  |
| А              | 1, 6, 7   |      |       |  |
| В              | 1, 7, 8   |      |       |  |
| С              | 1, 2, 8   |      |       |  |
| D              | 2, 8, 9   |      |       |  |
| Е              | 2, 3, 9   |      |       |  |
| F              | 3, 4, 9   |      |       |  |
| G              | 4, 9, 10  |      |       |  |
| Н              | 4, 5, 10  |      |       |  |
| I              | 5, 10, 11 |      |       |  |
| J              | 5, 6, 11  |      |       |  |
| К              | 6, 7, 11  |      |       |  |
| L              | 7, 8, 9   |      |       |  |
| М              | 7, 9, 10  |      |       |  |
| Ν              | 7, 10, 11 |      |       |  |



| X-Y Co | oordinates  |  |
|--------|-------------|--|
| node#  | coordinates |  |
| 1      | x1, y1      |  |
| 2      | x2, y2      |  |
| 3      | хЗ, уЗ      |  |
|        |             |  |
| 11     | x11, y11    |  |

| Z Coordinates |         |  |
|---------------|---------|--|
| node#         | z_value |  |
| 1             | z1      |  |
| 2             | z2      |  |
| 3             | z3      |  |
|               |         |  |
| 11            | z11     |  |

#### **Object-oriented model**



# Summary

- □ The heart of a GIS is the data model it employs.
- With increasing level of abstraction, models are created from human-oriented conceptual, logical to computer-oriented physical models
- □ There is no single type of GIS data model that is best for everything.
- Commonly used data models include:
  - □ CAD, graphical and image data models
  - Raster data model
  - Vector data model
  - Object-oriented data model